SECTION 1.7 NAVIGATION (NV)

Unit 1.7.1 PNVC: PPL navigation – all aircraft categories

1. <u>Reserved</u>

2. <u>General navigation</u>

2.1 Form of the earth

- 2.1.1 Describe:
 - (a) the shape and rotation of the earth;
 - (b) latitude, longitude;
 - (c) the difference between true and magnetic north;
 - (d) how distance and direction are measured and applied to navigation;
 - (e) magnetic variation and compass deviation;
 - (f) the relationship between magnetic heading, relative heading and magnetic bearing.

2.2 Time

- 2.2.1 Explain the terms UTC, local mean time, local (standard) time, local summer time.
- 2.2.2 Determine within +/- 5 min the beginning and end of civil twilight from AIP daylight and darkness graphs.
- 2.2.3 Complete conversions between LMT, UTC, local (standard) times, including local summer time.
- 2.2.4 List factors which may cause daylight to end earlier than the time extracted from AIP darkness graphs.

2.3 Basics – Extract information from documents

- 2.3.1 On a WAC and AIP 'visual' charts (if applicable) which cover the local area of operation:
 - (a) identify, without reference to the chart legend:
 - (i) major features to assist in map reading, for example, roads, rivers, lakes;
 - (ii) obstacles and spot heights, including elevation or height above terrain;
 - (iii) CTA, PRDs, and aerodrome data on VTC/ERC (if applicable);
 - (b) decode other symbols with reference to the chart legend;
 - (c) assess the general height of the terrain from hypsometric tints and contours;
 - (d) estimate track and distance;
 - (e) demonstrate and explain the reason for chart orientation in flight.
- 2.3.2 On visual AIP charts identify airspace boundaries and symbols with reference to the chart legend.
- 2.3.3 Use ERSA to extract:
 - (a) runway data;
 - (b) data pertaining to prohibited, restricted and danger areas.

2.4 Computation techniques

- 2.4.1 Use mental rules of thumb to estimate:
 - (a) time interval using estimated GS and distance, for example, 120 kt = 2 nm/min;
 - (b) endurance given fuel flow and fuel available (excluding reserve fuel).
- 2.4.2 Apply magnetic variation to obtain magnetic direction.
- 2.4.3 Carry out conversions between:
 - (a) feet/metres;
 - (b) nm/km;
 - (c) lbs/kg;

- (d) US gal/litres/kg of avgas.
- 2.4.4 Calculate headwind, tailwind and cross-wind components given W/V and HDG using:
 - (a) a navigation computer; and
 - (b) conversion and wind component tables in ERSA.
- 2.4.5 Calculate the following:
 - (a) CAS and TAS given air temperature and pressure height;
 - (b) HDG, GS and drift given TAS, W/V, TR;
 - (c) TR given HDG, TAS, W/V;
 - (d) climb and decent rates and gradients;
 - (e) TOPC and TOPD positions using average airspeed, W/V and rates of climb and descent.

2.5 Pilot navigation

- 2.5.1 Principles of map reading:
 - (a) describe the method of chart orientation; and
 - (b) list situations when a pilot should read:
 - (i) from map to ground; and
 - (ii) from ground to map; and
 - (c) select appropriate position lines to establish:
 - (i) ground speed; and
 - (ii) track error; and
 - (iii) a fix; and
 - (d) select appropriate ground features to establish position when flying:
 - (i) at low level (500 ft AGL); and
 - (ii) between (approximately) 2,000 and 10,000 ft; and
 - (iii) over mountainous terrain, coastal areas, densely populated and sparsely populated areas.
- 2.5.2 Chart preparation and selection (practice):
 - (a) draw tracks, track error lines, time/distance markings; and
 - (b) given a route select WAC(s) and appropriate AIP 'visual charts'.
- 2.5.3 With reference to a planned or given track and given appropriate data:
 - (a) determine track made good (TMG); and
 - (b) calculate drift; and
 - (c) determine alteration of heading or HDG(M) to:
 - (i) parallel track; and
 - (ii) intercept track at a nominated point; and
 - (iii) maintain track once track is intercepted; and
 - (d) revise/confirm estimates or ETA using latest ground speed or time/distance proportion; and
 - (e) establish a DR position using latest TR and GS; and
 - (f) using a map plotter, employ mental dead reckoning and proportional techniques to solve inflight navigational problems, including:
 - (i) mentally apply the 1 in 60 rule; and
 - (ii) mentally revise estimates/ETA's; and
 - (iii) estimate TR and ETI to a selected diversion point.

2.6 Radio navigation aids

2.6.1 Extract NDB and VOR information from ERSA or ERC and state the rated coverage of a VOR up to 10,000 ft.

2.7 Area navigation systems

- 2.7.1 Types of systems:
 - (a) external sensor systems:
 - (i) VOR/DME;
 - (ii) GNSS.
- 2.7.2 General principles:
 - (a) inputs required:
 - (i) air data inputs;
 - (ii) other inputs;
 - outputs generated:
 - (i) types of outputs;
 - (ii) uses.
- 2.7.3 RNAV systems:

(b)

- (a) principle of VOR/DME area navigation (RNAV);
- (b) advantages and disadvantages;
- (c) limitations and restrictions:
 - (i) errors, accuracy, reliability;
 - (ii) coverage;
 - (iii) range.
- (d) typical control panel.
- 2.7.4 Reserved:
- 2.7.5 Satellite navigation systems:
 - (a) principle of GNSS navigation:
 - (i) elements of GNSS (for example, GPS, GLONASS);
 - (b) advantages and disadvantages;
 - (c) limitations and restrictions:
 - (i) errors, accuracy, reliability;
 - (ii) coverage;
 - (iii) range;
 - (d) typical control panel;
 - (e) approvals for IFR Navigation;
 - (f) GNSS system enhancements (for example, DGNSS, GLS, WAAS).
- 2.7.6 Updating area navigation systems:
 - (a) need for updating position;
 - (b) requirements for updating:
 - (i) manual inserting;
 - (ii) automatic updating;
 - (iii) inhibiting updating;
 - (c) common indications when system updates position.

Unit 1.7.2 CNVC: CPL navigation – all aircraft categories

1. <u>Reserved</u>

2. <u>Navigation</u>

2.1 Form of the earth

- 2.1.1 Explain the following terms listed in (a) to (g):
 - (a) the shape and rotation of the earth; and
 - (b) latitude, longitude; and
 - (c) equator, Greenwich meridian; and
 - (d) great circles, small circles, rhumb lines; and
 - (e) difference between true and magnetic north; and
 - (f) terrestrial magnetism, magnetic variation and the change in variation with time; and
 - (g) distance on the earth i.e. relationship between a minute of latitude and a nautical mile; and, if applicable, their effect on:
 - (i) position on the earth; and
 - (ii) time differences; and
 - (iii) distance and direction.

2.2 Time

- 2.2.1 Explain the terms UTC, local mean time, local (standard) time, local summer time.
- 2.2.2 Determine within +/- 5 min the beginning and end of civil twilight from AIP daylight and darkness graphs.
- 2.2.3 Complete conversions between:
- (a) LMT, UTC, local (standard) times, including local summer time.
- 2.2.4 List factors which may cause daylight to end earlier than the time extracted from AIP darkness graphs.
- 2.2.5 Describe the effect of the earth's rotation and revolution around the sun on the:
 - (a) beginning and end of daylight;
 - (b) period of daylight.
- 2.2.6 Describe the effect of changes in longitude on Local Mean Time.

2.3 Charts and publications

- 2.3.1 From:
 - (a) AIP visual charts, that is ERC, VTC and AUS PCA, including any subsequent changes to charts required for flight under VFR; and
 - (b) ERSA;

select the chart(s) or document(s) which contain information about a given item of operational significance.

- 2.3.2 Decode symbols and apply information displayed on AIP visual charts.
- 2.3.3 Interpret topographic detail and decode symbols displayed on a WAC and VTC.
- 2.3.4 On WAC and AIP visual charts using chart and latitude scale:
 - (a) estimate tracks and distances; and
 - (b) measure rhumb line track; and
 - (c) measure distance; and
 - (d) plot a position given:
 - (i) latitude and longitude; and
 - (ii) bearing and distance.
- 2.3.5 Describe the different kinds of map projections used in aviation and:

- (a) identify the following properties of a Lamberts Conformal:
 - (i) appearance of rhumb lines, great circles, meridians and the graticule;
 - (ii) distortion of shapes and areas;
 - (iii) scale variation;
- (b) describe the methods of representing scale.

2.4 Computations

- 2.4.1 Review computations and conversions and:
 - (a) solve GS, distance, fuel used, fuel required, fuel remaining and fuel consumption problems, given appropriate combinations of these factors; and
 - (b) solve CAS/TAS problems given air temperature and pressure height; and
 - (c) determine HDG, GS and drift given TAS, W/V, TR; and
 - (d) determine TR given HDG, TAS, W/V; and
 - (e) solve problems relating to rates/gradients of climb and descent; and
 - (f) determine TOPC and TOPD position using average airspeed, W/V, and rates of climb/descent.

2.5 Pilot navigation

2.5.1 Principles of map reading:

- (a) describe the method of chart orientation; and
- (b) list situations when a pilot should read:
 - (i) from map to ground; and
 - (ii) from ground to map; and
- (c) select appropriate position lines to establish:
 - (i) ground speed; and
 - (ii) track error; and
 - (iii) a fix; and
- (d) select appropriate ground features to establish position when flying:
 - (i) at low level (500 ft AGL); and
 - (ii) between (approximately) 2,000 and 10,000 ft; and
 - (iii) over mountainous terrain, coastal areas, densely populated and sparsely populated areas.
- 2.5.2 Chart preparation and selection (practice):
 - (a) draw tracks, track error lines, time/distance markings; and
 - (b) given a route select WAC(s) and appropriate AIP 'visual charts'.
- 2.5.3 With reference to a planned or given track and given appropriate data:
 - (a) determine track made good (TMG); and
 - (b) calculate drift; and
 - (c) determine alteration of heading or HDG(M) to:
 - (i) parallel track; and
 - (ii) intercept track at a nominated point; and
 - (iii) maintain track once track is intercepted; and
 - (d) revise/confirm estimates or ETA using latest ground speed or time/distance proportion; and
 - (e) establish a DR position using latest TR and GS; and
 - (f) using a map plotter, employ mental dead reckoning and proportional techniques to solve inflight navigational problems, including:
 - (i) mentally apply the 1 in 60 rule; and
 - (ii) mentally revise estimates/ETA's; and

(iii) estimate TR and ETI to a selected diversion point.

2.6 Radio navigation aids

- 2.6.1 Describe how to identify an aid and state the frequency of a nominated NDB or VOR.
- 2.6.2 Extract NDB and VOR information from ERSA or ERC and state the rated coverage of a VOR up to 10,000 ft.
- 2.6.3 State the effect (in Australia) of the following errors on the reliability of ADF cockpit indications:
 - (a) co-channel interference;
 - (b) mountain effect;
 - (c) effect of thunderstorms;
 - (d) coastal refraction.
- 2.6.4 Explain why information pertaining to broadcasting stations is included in ERSA.
- 2.6.5 Recall the 'aggregate' error of a VOR and explain what is meant by 'scalloping'.
- 2.6.6 Establish a position line given:
 - (a) HDG and ADF data; and
 - (b) VOR indications.
- 2.6.7 Describe how to use the VOR to determine TR to or from a station.
- 2.6.8 Describe how to use an ADF or VOR to home to a station, and recognise instrument indications that signify station passage.
- 2.6.9 Establish fixes and use these fixes to make off-track corrections using a DME distance and the following:
 - (a) HDG and ADF data; or
 - (b) VOR indications.

Unit 1.7.3 ANVC: ATPL navigation – all aircraft categories

1. <u>Reserved</u>

2. <u>Advanced navigation</u>

2.1 Navigation charts

- 2.1.1 Lambert Conformal Conic Projection:
 - (a) review properties:
 - (i) great circles, rhumb lines, rules lines;
 - (ii) scales, chart convergence;
 - (b) brief comparison with properties of other projections:
 - (i) Mercator;
 - (ii) Polar sterographic.
- 2.1.2 Use of AIP (MAP) charts.

2.2 Time zones

- (a) brief review:
 - (i) time zones, date line;
 - (ii) LMT, LST, UTC;
 - (iii) conversion from LMT/LST to UTC and vice versa;
- (b) practical examples of LST arrival/departure calculations for flights across time zones:
 - (i) with and without date line involvement.

2.3 Flight instruments

- 2.3.1 Air data instruments:
 - (a) review of altimeter, ASI, VSI, IVSI and Machmeter:
 - (i) principles of operation;
 - (ii) errors;
 - (iii) relationship between IAS, CAS, EAS, TAS and TMN;
 - (b) modern instrumentation:
 - (i) integrated displays;
 - (ii) EFIS;
 - (iii) standby instruments.
- 2.3.2 Air data computer (ADC):
 - (a) principles of operation;
 - (b) input and output data;
 - (c) uses of output data.
- 2.3.3 Gyroscopic principles:
 - (a) rigidity, precession:
 - (i) real and apparent precession;
 - (ii) correcting for precession;
 - (b) types of gyros in common use:
 - (i) mechanical;
 - (ii) laser gyros;
 - (c) gyro platforms:
 - (i) two- and three-dimensional stability;
 - (d) introduce concept of self-contained instruments versus gyro-platform output displays.

2.4 Compasses

- 2.4.1 Direct reading compass:
 - (a) principle of operation and errors;
 - (b) advantages and disadvantages.
- 2.4.2 Slaved gyro-stabilised compass:
 - (a) principles of operation;
 - (b) errors;
 - (c) advantages and disadvantages;
 - (d) uses of output data.
- 2.4.3 Inertial heading:
 - (a) use of a gyro platform to compute true heading:
 - (i) principles;
 - (ii) significance of initial positions insert;
 - (b) magnetic heading as a modification of true heading.

2.5 Radiowave propagation

- 2.5.1 Terminology:
 - (a) understand general principles of radio propagation;
 - (b) understand and be able to use in correct sense:
 - (i) wavelength;
 - (ii) amplitude;
 - (iii) frequency;
 - (iv) phase angle;
 - (v) frequency bands;
 - (vi) the following sidebands:
 - (A) SSB;
 - (B) LSB;
 - (C) USB;
 - (vii) carrier;
 - (viii) modulation, including the following:
 - (A) amplitude;
 - (B) frequency;
 - (C) pulse;
 - (D) multiplex;
 - (ix) demodulation.
- 2.5.2 Wave propagation:
 - (a) groundwaves, space (direct) waves, skywaves;
 - (b) propagation within the frequency bands;
 - (c) factors affecting reception:
 - (i) fading;
 - (ii) static;
 - (d) use of HF for communications:
 - (i) frequency prognosis;
 - (ii) SELCAL.
- 2.5.3 Antennas:
 - (a) function/purpose of antennas;

- (b) types of antennas in common use for aircraft:
 - (i) uses;
 - (ii) characteristics (outline only):
 - (A) directionality;
 - (B) polarisation.

2.6 Radio NavAids

2.6.1 ADF (including NDBs and use of RMI):

- (a) application for navigation;
- (b) principles;
- (c) presentation and interpretation;
- (d) coverage;
- (e) range;
- (f) errors and accuracy;
- (g) factors affecting range and accuracy.
- 2.6.2 VOR and Doppler-VOR (including use of RMI):
 - (a) application for navigation;
 - (b) principles;
 - (c) presentation and interpretation;
 - (d) coverage;
 - (e) range;
 - (f) errors and accuracy;
 - (g) factors affecting range and accuracy.
- 2.6.3 DME (distance measurement equipment):
 - (a) application for navigation;
 - (b) principles;
 - (c) presentation and interpretation;
 - (d) range;
 - (e) errors and accuracy;
 - (f) factors affecting range and accuracy.
- 2.6.4 ILS (instrument landing system):
 - (a) application for navigation;
 - (b) principles;
 - (c) presentation and interpretation;
 - (d) coverage;
 - (e) range;
 - (f) errors and accuracy;
 - (g) factors affecting range and accuracy.
- 2.6.5 MLS (microwave landing system):
 - (a) application for navigation;
 - (b) principles;
 - (c) presentation and interpretation;
 - (d) coverage;
 - (e) range;
 - (f) errors and accuracy;
 - (g) factors affecting range and accuracy.

2.7 Route navigation

- 2.7.1 Route selection:
 - (a) great circle tracks;
 - (b) choice of speed and flight level;
 - (c) ETOPS considerations.
- 2.7.2 Navigation on climb and descent:
 - (a) wind and temperature variations:
 - (i) desirability of allowing for variations;
 - (ii) availability of data in actual situations.
 - (b) weather/traffic avoidance:
 - (i) concept of track miles.
 - (c) allowance for use of anti-ice equipment:
 - (i) reduced rate of climb;
 - (ii) reduced rate of descent.
- 2.7.3 Use of radio NavAids:
 - (a) requirement for regular position fixing;
 - (b) use of navaid position lines to establish position:
 - (i) along track;
 - (ii) across track;
 - (iii) desired/preferred form of P/L intersections;
 - (c) computer-controlled navaid receivers:
 - (i) auto-tuning;
 - (ii) manual selection;
 - (iii) precautions.
- 2.7.4 Calculation of track and groundspeed:
 - (a) review basic track and groundspeed calculations:
 - (i) plotted positions, IAS/TAS/GS, HDG/TRK;
 - (ii) determination of wind velocity (track and groundspeed methods only);
 - (iii) calculation of ETAs, EETs;
 - (b) review ETP and PNR calculations;
 - (c) inflight diversion to fixed point:
 - (i) last PSD;
 - (ii) time and fuel required.

2.8 Basic radar principles

- 2.8.1 Pulse techniques and associated terminology.
- 2.8.2 Ground radar:
 - (a) coverage of ATC radars, factors affecting range and accuracy;
 - (b) facilities provided by Met radars for storm warning and avoidance.
- 2.8.3 Airborne weather radar:
 - (a) principles;
 - (b) types;
 - (c) presentation and interpretation;
 - (d) factors affecting range and accuracy.
- 2.8.4 SSR (secondary surveillance radar) and transponder:
 - (a) principles;
 - (b) application for traffic control;

- (c) presentation and interpretation;
- (d) advantages compared to primary radar for traffic control.
- 2.8.5 Radio altimeter:
 - (a) principle of operation;
 - (b) display;
 - (c) accuracy, errors.

2.9 Area navigation systems

- 2.9.1 Type of systems
 - (a) Self-contained on-board systems including the following;
 - (i) INS;
 - (ii) DOPPLER;
 - (b) External sensor systems including the following:
 - (i) VOR and DME;
 - (ii) GNSS.
- 2.9.2 General principles:
 - (a) inputs required:
 - (i) air data inputs;
 - (ii) other inputs;
 - (b) outputs generated:
 - (i) types of outputs;
 - (ii) uses.
- 2.9.3 RNAV systems:
 - (a) principle of VOR/DME area navigation (RNAV);
 - (b) advantages and disadvantages;
 - (c) limitations and restrictions:
 - (i) errors, accuracy, reliability;
 - (ii) coverage;
 - (iii) range.
 - (d) typical control panel.
- 2.9.4 Reserved:
- 2.9.5 Satellite navigation systems:
 - (a) principle of GNSS navigation:
 - (i) elements of GNSS (for example, GPS, GLONASS);
 - (b) advantages and disadvantages;
 - (c) limitations and restrictions:
 - (i) errors, accuracy, reliability;
 - (ii) coverage;
 - (iii) range;
 - (d) typical control panel;
 - (e) approvals for IFR Navigation;
 - (f) GNSS system enhancements (for example, DGNSS, GLS, WAAS).
- 2.9.6 Updating area navigation systems:
 - (a) need for updating position;
 - (b) requirements for updating:
 - (i) manual inserting;
 - (ii) automatic updating;

- (iii) inhibiting updating;
- (a) common indications when system updates position.

Unit 1.7.4	ANVA:	ATPL navigation – aeroplane – Reserved
Unit 1.7.5	ANVH:	ATPL navigation – helicopter – Reserved